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Abstract

The Laplace-Beltrami system of nonlinear, elliptic, partial differential equations has
utility in the generation of computational grids on complex and highly curved ge-
ometry. Discretization of this system with Finite Elements readily accommodates
unstructured grids, but generates a large, sparse, ill-conditioned system of nonlinear
discrete equations. The extensive use of the Laplace-Beltrami approach, particu-
larly in large-scale applications, has been limited by the scalability and efficiency
of solvers. This paper addresses this limitation by developing two nonlinear solvers
based on the Jacobian-Free Newton-Krylov (JFNK) methodology. A key feature of
these methods is that the Jacobian is not formed explicitly for use by the underly-
ing linear solver. Iterative linear solvers such as the Generalized Minimal RESidual
(GMRES) method do not technically require the stand-alone Jacobian; instead its
action on a vector is approximated through two nonlinear function evaluations. The
preconditioning required by GMRES is also discussed; two different preconditioners
are developed, both of which are readily treated with existing Algebraic Multigrid
(AMG) methods. Further, the most efficient preconditioner overall for the problems
considered is based on a Picard linearization. Numerical examples demonstrate that
these new solvers are significantly faster than a standard Newton-Krylov approach;
a speedup factor of approximately 26 was obtained for the Picard preconditioner
on the largest grids studied here. In addition, these JFNK solvers exhibit good
algorithmic scaling with increasing grid size.
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1 Introduction

The desire to simulate more complex and detailed physical processes contin-
ues to drive research in grid generation algorithms. Advances in computational
physics applications demand continued improvement in grid quality, and ever-
increasing grid refinement. To support these changing application require-
ments, grid generation algorithms are becoming more flexible, complex, and
computationally intensive. Additionally, grid topologies are becoming more
general, with hybrid or mixed element grids and complex boundary structure
becoming important in a variety of applications.

The Laplace-Beltrami system is well known as an elliptic grid generation
method, and has been studied extensively for structured grids (see [1,2]). In
d-dimensions, this system may be written as a coupled set of d nonlinear ellip-
tic (diffusion) equations. Each coordinate is defined by one nonlinear diffusion
equation in which the metric tensor acts as the diffusion coefficient. These
nonlinear equations are coupled through the dependence of the metric tensor
on all d coordinates. Recently, Hansen et al.[3,4] developed a new methodol-
ogy, based on the Laplace-Beltrami system, for smoothing unstructured grids
in two-dimensional and three-dimensional problems. The metric tensor that
appears in this nonlinear elliptic system of equations is typically viewed as de-
scriptive of the particular element in the grid. However, the metric tensor may
be constructed by the user to modify the state of the grid; indeed, the metric
tensor may be considered as being prescriptive in nature. This prescriptive
tensor is quite general in concept. It is only required to be symmetric positive
definite. The resulting freedom in the specific choice of the metric tensor has
previously been employed for the purpose of grid adaptation to various solu-
tion properties on two-dimensional structured grids [5–8]. In the target metric
approach presented in [4], this freedom is exploited to improve grid quality
within the constraints of the geometry of the domain and the connectivity of
the grid.

Solving the nonlinear system of diffusion equations that arises in both con-
ventional Laplace-Beltrami grid generation algorithms and the target metric
approach to Laplace-Beltrami grid smoothing is a challenging problem. This
paper focuses only on the latter, but notes that the problems are quite similar.
Discretization of this nonlinear system of diffusion equations using a Finite
Element Method (FEM) results in a large, sparse, and ill-conditioned system
of nonlinear equations [4]. For a grid with N vertices, this system has 3N
unknowns. It is common for complex applications to use grids with tens to
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hundreds of thousands of elements; it is thus paramount that the solution
algorithm scales well with increasing grid size. In addition, the target metric
tensor will typically be discontinuous across element boundaries. Thus, the
solver must be robust with respect to these jumps, as well as capable of han-
dling unstructured grids on complex geometries. Finally, parallel scalability
must be considered in the design as many applications require the additional
processing power and memory that is only available through the use of parallel
architectures.

In [3] and [4], a Newton-Krylov (NK) solver was used that formed the full
Jacobian for each Newton Step. Since the Jacobian is a large sparse nonsym-
metric matrix, the restarted Generalized Minimal Residual method (GMRES)
was chosen as the Krylov solver. A block incomplete factorization, BILU(1),
was used in conjunction with symmetric successive over-relaxation (SSOR)
as a preconditioner for GMRES. Although this NK solution algorithm per-
formed well enough to demonstrate the potential of the target metric smooth-
ing methodology, it is not practical for large-scale applications. Specifically,
the computation of the Jacobian is very expensive because the target met-
ric introduces dependencies in a neighborhood of each element. Hence, even
though this component of the solver scales in a linear fashion with grid size,
the cost is prohibitive. In addition, assuming that the movement of the ver-
tices in each nonlinear iteration is relatively small, the Jacobian is diffusion
dominated, and hence, the cost of the preconditioned GMRES solution scales
superlinearly with the grid size.

This work develops efficient nonlinear solvers that address these two weak-
nesses of the standard NK solver. First, motivated by the need to eliminate
the evaluation of the full Jacobian, this study uses the Jacobian-Free Newton-
Krylov (JFNK) class of nonlinear solvers. These methods have been used
successfully in a broad range of applications [9,10] and are based on the ob-
servation that Krylov methods do not explicitly need a matrix, but rather
build a solution based on the action of the matrix on a vector. This matrix-
vector product may be obtained by a finite-difference approximation using
the nonlinear functional itself, allowing the computation of the Jacobian to be
avoided.

To address the second weakness, an effective preconditioner for the restarted
GMRES solver that leverages a multilevel solution algorithm to deliver the
necessary efficiency, is sought. There are two aspects to the preconditioning
problem. First, a preconditioner P must be developed that is sufficiently close
to the full Jacobian J , such that the number of GMRES iterations is indepen-
dent of the grid size. In this context, the perfect preconditioner is the Jacobian
itself, P = J . While this is too costly to form in each Newton step, it is not
uncommon to perform this computation once during the first Newton step and
reuse this frozen Jacobian throughout the remainder of the solution process
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[9]. An alternative preconditioning approach is suggested by JFNK studies of a
similar system of nonlinear partial differential equations (PDEs) that describe
nonequilibrium radiation diffusion [11,12]. In these studies, the Picard lin-
earization was found to be an effective preconditioner. For both precondition-
ers, their effectiveness reflects the fact that they capture the underlying elliptic
nature of the Jacobian. For elliptic problems, multilevel iterative methods are
the only solvers whose computational cost scales optimally with problem size.
An introduction to multigrid methods is given in [13], and a comprehensive
review of the field is presented in [14]. Multigrid methods have been studied
previously in the context of Laplace-Beltrami grid-generation. In [15], the lin-
ear solver for the Picard linearization of a three-dimensional Laplace-Beltrami
grid-generator was accelerated by a two-dimensional structured multigrid al-
gorithm, and in [8] a “matrix-light” structured multigrid solver was used as
a preconditioner in a two-dimensional grid-generation application. The latter
is based on re-discretizing the linearized differential operator on coarser grids,
while the multigrid code employed in the former relies on matrix-dependent
prolongation and restriction operators. While these are good solver strategies
for structured grid applications; this paper seeks to address the needs of appli-
cations employing 3D unstructured grids. This generalization will be addressed
with the use of algebraic multigrid (AMG) [16–18], to approximately-invert
the preconditioner using a small number of V-cycles. AMG methods were de-
veloped to handle unstructured grids, and are robust with respect to jumps
in the diffusion coefficients. Although the underlying theory and heuristics in
AMG methods are motivated by scalar diffusion problems, they have been used
successfully for systems of PDEs and nonsymmetric problems. It is important
to note that efficient implementations of both Krylov solvers (e.g., the PCG
[19] and HYPRE [20] packages) and AMG solvers (e.g., the LAMG [21] and
BoomerAMG [20] packages) with good parallel scalability, are available. Thus,
the nonlinear solvers developed here are extensible to parallel architectures.

The objective of this research is to demonstrate the efficient Laplace-Beltrami
target-metric smoothing of unstructured grids and the feasibility of this tech-
nique for large-scale applications. Section 2 reviews the target metric approach
to Laplace-Beltrami grid smoothing first introduced in [3,4], and discusses
the associated boundary conditions. Section 3 highlights key elements of the
JFNK approach and introduces the frozen Jacobian and the Picard lineariza-
tion preconditioners. The issues associated with using AMG to approximately
invert these preconditioners are considered in Section 3.2. Section 4 presents a
performance comparison of JFNK solvers that use the Frozen and Picard pre-
conditioners with the reference NK solver that uses a BILU(1)/SSOR precon-
ditioner. The comparison includes results for three grids from [4] (Section 4.1)
and a scaling study on two sequences of logically-structured hexahedral grids
(Section 4.2). Finally, conclusions are developed in Section 5.
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2 The target metric approach to grid smoothing

The use of a target metric tensor in conjunction with the Laplace-Beltrami
equation system was recently proposed by Hansen et al.[3,4]. Elliptic equation
systems have been used extensively in grid generation applications, due to
their robustness, smoothing behavior, and other desirable characteristics that
they impart on the final grid. Each elliptic approach differs in implementation,
depending on the goals and requirements of the application that they were de-
veloped to support. The Laplace-Beltrami system is an elliptic system derived
from the Laplacian operator in general coordinates. In the Laplace-Beltrami
approach, the metric tensor is typically viewed as descriptive in nature; it de-
scribes the mapping of each element into the final computational grid. The
Laplace-Beltrami target metric approach proposed in [3,4] employs the metric
tensor in a prescriptive manner; a tensor is created to describe an “improved”
version of each of the elements contained in the original grid. This new ten-
sor, the target element metric tensor, is used in the solution of the Laplace-
Beltrami system to enhance the previous grid state. In the interior of the grid,
the target metric method is based on prescribing deviations from a unity ra-
tio and/or the angular relationship of the fundamental coordinate directions.
This is typically best implemented using the method of coarse-graining pro-
posed in [4], especially on an unstructured or hybrid-element grid. At the
grid boundary, the nodal coordinates of the grid are typically fixed, forming
a Dirichlet boundary condition. This relationship is shown schematically in
the two-dimensional diagram, Figure 1. In both coordinate systems shown in
the illustration, u = (u, v) and x = (x, y), there is a single physical domain.
Given this domain with an interior grid that characterizes u, the objective to
grid improvement is to modify the interior grid while preserving the shape of
the boundary of the domain.

Given a domain Ω ∈ <3, the coordinate systems of interest are written as
x = (x1, x2, x3) and u = (u1, u2, u3), such that the covariant components of

v y

xu

Fig. 1. The objective of combining a target metric with the Laplace-Beltrami system
is to improve the quality of the interior grid while fixing the physical boundary of
the object.
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the metric tensor may be expressed as

gαβ =
3∑

i=1

∂xi

∂uα

∂xi

∂uβ
. (1)

The contravariant components of the metric tensor are written as gαβ; these
components are simply those of the inverse of gαβ. Omitting the details of the
derivation (c.f., [4, Section 2]), the Laplace equations for the coordinates xi

may be written as

∆xi =
1
√
g

∂

∂uα

(
√
ggαβ ∂x

i

∂uβ

)
= 0 , (2)

where g is the determinant of the covariant metric tensor.

Equation (2) is the basis for the finite element discretization. To derive this fi-
nite element approximation, multiply (2) by a sufficiently smooth test function
w and integrate over the domain. After integration by parts, one obtains∫

Ω

∂w

∂uα

√
ggαβ ∂x

i

∂uβ
du−

∫
∂Ω
w
√
ggαβ ∂x

i

∂uβ
dsα = 0. (3)

In case of a Dirichlet problem, the grid coordinates xi are specified on the
boundary ∂Ω. A finite element discretization of the coordinates xi using linear
basis functions ψn(u) yields

xi(u) =
N∑

n=1

xi
nψn(u). (4)

Substituting (4) into (3) and omitting the boundary term results in the non-
linear algebraic system

N∑
n=1

Kmn(x)xi
n = 0, for i = 1, 2, 3, and m = 1, . . . , N, (5)

where the entries in the stiffness matrix are given by

Kmn(x) =
∫
Ω

∂ψm

∂uα

√
ggαβ ∂ψn

∂uβ
du . (6)

The stiffness matrix K(x) = [Kmn(x)]m,n=1,...,N depends on the vector of ex-
pansion coefficients x, since the components of the element metric tensor ge

αβ

depend on it. As is common in finite element methods, a computationally
convenient representation of these components is attained by transforming to
a reference element with coordinates (ξ, η, ζ). Thus, for element Ωe with M
nodes,

ge
αβ =

M∑
m=1

M∑
n=1

(xe
mx

e
n + ye

my
e
n + ze

mz
e
n)
ψm

∂ξα

ψn

∂ξβ
, (7)
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where

xe =
M∑

m=1

xe
mψ(ξ, η, ζ) (8)

is the expansion of the x-coordinate of element e in terms of the finite element
basis function ψ on the reference element. The expansions of the y- and z-
coordinates of element Ωe are analogous to (8).

Thus far, the grid and its properties have been defined in terms of the current
or initial grid. Specifically, the metric tensor (7) is consistent with the current
grid; hence, the current grid is actually the solution of the nonlinear algebraic
system given in Equation (5). The target metric method is designed to drive
this system to move the current grid to a more desirable state by modify-
ing (7). The process of coarse-graining was introduced in [4] as a means to
compute a target metric based on the given unstructured grid. Figure 2 illus-
trates this coarse-graining process using a two-dimensional example grid that
is comprised of quadrilaterals and triangles.

B

C̄

C

E

F

H

I

AD
G

Fig. 2. Coarse Graining: The target metric is based on averaged vertex positions,
such as C̄, which is the average of vertices A, B, F , G, and H.

To compute the target metric tensor for an element, averaged coordinates
for its vertices are computed using their edge-connected neighbor vertices.
For example, to compute the target metric tensor for the shaded triangle in
Figure 2, averaged coordinates for vertices A, B, and C are computed. In this
case, the averaged coordinates of C, denoted C̄ are given by

C̄ =
1

5
(A+B + F +G+H) . (9)

This coarse-grained strategy is employed to compute the target metric tensor

g̃e
αβ =

M∑
m=1

M∑
n=1

(x̄e
mx̄

e
n + ȳe

mȳ
e
n + z̄e

mz̄
e
n)
ψm

∂ξα

ψn

∂ξβ
, (10)
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where (x̄e
m, ȳ

e
m, z̄

e
m) are the coarse-grained coordinates of the vertices of ele-

ment Ωe. The arithmetic average of coordinates was inspired by Laplacian
grid smoothing [22]. It is important to note that, unlike in Laplacian smooth-
ing where the average positions are used to directly place the grid nodes,
coarse-graining is used to merely formulate a “more-optimal” state for the
final element. The nodes are placed to satisfy the Laplace-Beltrami system
using the target metric in the solution of Equation (5).

It is also useful to note that, although simple averaging is employed in this
study, the target metric approach is a flexible methodology that offers a nat-
ural way to build a number of features of interest into the final grid. These
include reference or weighting of the original grid (grid-memory), preservation
of specific features of the grid, physics-based adaptivity, and/or impedance-
matched smoothing along interfaces [23].

2.1 Boundary conditions

The Laplace-Beltrami method outlined above requires the specification of
boundary conditions on both the nodal coordinates x, and the target met-
ric tensor. In [3,4], the nodal coordinates of internal interfaces and boundaries
were held fixed at their initial location. This Dirichlet condition is used in this
study as well.

The boundary condition on the target metric tensor is more subtle, as it
arises indirectly through its dependence on averaged coordinates (see Equa-
tion (10)), which on boundary elements include fixed boundary nodes. In [3],
a dual grid target metric was presented, where element ghosting at the bound-
ary provides a straightforward mechanism to compute the target metric over
the entire domain. This approach is quite robust, and applies equally well to
the coarse-grained target metric introduced in [4] and employed here. Ele-
ment ghosting was used in [4] for the sphere, torus, and extruded horseshoe
grids. Alternative boundary conditions on the target metric may be defined if
ghosting is inconvenient. For example, with convex or planar boundaries it is
possible to replace the averaged coordinates (x̄e

m, ȳ
e
m, z̄

e
m) in (10) at boundary

nodes, by their fixed original position. However, a more reflective condition is
required near severely concave boundaries (i.e., re-entrant edges or corners).

3 The Nonlinear Solver: Jacobian-Free Newton-Krylov

This paper presents two efficient iterative solvers for the nonlinear system
given in Equation (5), both are based on the Jacobian-Free Newton-Krylov
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(JFNK) methodology (cf. [9] and references contained therein). These new
solvers offer a significant improvement in performance over the standard Newton-
Krylov method used in [4].

For this presentation, it is convenient to write the full nonlinear system in the
form,

F(x) = [F1(x),F2(x),F3(x)]T = 0 , (11)

where the components of F(x) are taken directly from Equation (5),

Fi(x) =
N∑

n=1

Kmn(xi)xi
n = 0 for i = 1, 2, 3 . (12)

Hence Fi(x) : <3N → <N , where N is again the number of nodes in the grid.
The Jacobian of this system is a 3N × 3N sparse matrix,

J (x) =
∂F(x)

∂x
. (13)

If one orders the unknowns first by coordinate and then by node index,

x = [x1
1, . . . , x

1
N , x

2
1, . . . , x

2
N , x

3
1, . . . , x

3
N ]T ,

then the Jacobian may be naturally written as a 3× 3 block matrix,

J (i,j) =
∂F i

∂xj
i = 1, 2, 3 and j = 1, 2, 3. (14)

Each block in the above is an N ×N matrix with entries given by,

J (i,j)
(m,n) =

∂F i
m

∂xj
n

m = 1, . . . , N and n = 1, . . . , N . (15)

Given the Jacobian in this form, it is straightforward to express the Newton
iteration,

x(k+1) ←− x(k) + δx(k), and (16)

J (x(k)) δx(k) =−F(x(k)), (17)

where the superscript k denotes the iteration count of the Newton iteration.
Using Newton’s method as shown here amounts to implementing a sequence
of steps:

(1) Form the Jacobian matrix.
(2) Solve the sparse linear system (17) to obtain δx(k).
(3) Apply this update (16) to obtain the next iteration of the solution state

vector, x(k+1).
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These steps are usually challenging to perform in an actual grid generation
application. Formation of the Jacobian matrix (in this case the finite element
tangent stiffness matrix), is very costly in terms of both memory and computer
time. Secondly, solving the linear system that arises in the use of the Jacobian
is typically a daunting problem in its own right. This system is usually very
large, sparse, and ill-conditioned in a typical application; making its efficient
solution quite challenging.

3.1 Jacobian-Free Newton-Krylov Steps

The nonlinear solver described in [4] computes the Jacobian matrix each New-
ton iteration. Even for moderately-large grids, the cost of forming the Jacobian
is high and typically dominates the computation, making this grid smoothing
algorithm impractical for most situations. Fortunately, Krylov iterative solvers
such as the generalized minimum residual (GMRES) algorithm [24], which is
used here to solve the Jacobian system, do not require the Jacobian matrix
itself but simply the action of the Jacobian matrix on a vector. Approximat-
ing this matrix-vector product by differencing, which requires two nonlinear
function evaluations, is the basis of the Jacobian-Free Newton-Krylov (JFNK)
method. Specifically, to evaluate the matrix-vector product J (x(k))v, a finite-
difference approach,

J (x(k))v ≈ F(x(k) + εv)−F(x(k))

ε
, (18)

is commonly used [9,25]. Here, ε is chosen to avoid problems with machine
precision,

ε =

√
(1 + ‖u‖2)ε̂
‖v‖2

, (19)

with ε̂ = 10−12.

Using this Jacobian-free approach, the dominant cost of the algorithm shifts
from evaluating the Jacobian to the solution of the linear system. Indeed, the
solution cost of GMRES for elliptic problems scales quadratically with the
number of unknowns in the grid, unless effective preconditioning is used [26].

3.2 Multigrid Preconditioning of GMRES

To develop efficient preconditioners for the Krylov solution of the Jacobian
system requires an examination of the Jacobian structure and properties. Lin-
earizing the strong form of the continuous model (2) about a smoothed grid
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x = x∗, one obtains

J = D + C (20)

where D = diag{D1,D2,D3} is the contribution to the diagonal arising from
the elliptic component, and C represents the lower order terms. Specifically,

Di = ∇u · G(x∗)∇u (21)

where G(x∗) = g(x∗)gαβ(x∗), and the lower order terms are given by

Ci,j = ∇u ·
∂G
∂xj

∇uxi

∣∣∣∣∣
x=x∗

(22)

The diagonal terms Di are general diffusion operators with a discontinuous
full tensor diffusion coefficient corresponding to the metric tensor. In contrast,
while the entries of C are not derivative operators, they contain derivatives of
both the solution and the metric tensor. Clearly, in a typical application, the
signs and magnitude of these terms may vary dramatically. Lastly, C is not
symmetric.

There are a number of significant challenges for the efficient and scalable so-
lution of the full Jacobian linear system. First, the solution involves a coupled
system of three partial differential equations that are likely to be strongly
elliptic over part or all of the domain. This implies that, in order for the com-
putational cost of the solver to scale linearly with the number of unknowns
(i.e., provide optimal algorithmic scaling), the preconditioner must be a multi-
level algorithm. Also, to accommodate unstructured grids, the preconditioner
must based based solely on the fine-scale discrete system. The Ruge–Stüben
algebraic multigrid (AMG) method [16,17] and its various descendants meet
both of these requirements. Unfortunately, most of the heuristics that form
the basis of these AMG algorithms are motivated by scalar elliptic equations
(such as the blocks Di given in Equation (21)) as opposed to a coupled sys-
tem of PDEs. Secondly, the full Jacobian is nonsymmetric. The theoretical
foundation of AMG methods for nonsymmetric matrices is much weaker than
it is for symmetric matrices. Finally, but perhaps most importantly, the lo-
cal character of the equations may shift from well-posed elliptic PDEs to a
more “Helmholtz-like” system, especially in the neighborhood of highly-curved
boundaries. Nevertheless, despite these weaknesses in the theoretical founda-
tion, this study seeks to demonstrate that AMG is capable of solving the full
Jacobian linear system with only moderate degradation in performance and
scaling. As an aside, it is important to note that robust and efficient MPI-
based parallel versions of AMG are available (e.g., [27,20,21]) and scalability
to large numbers of processors has been demonstrated [28]. Although parallel
scalability is not directly addressed in this study, meeting this requirement is
critical for the extension of the Laplace-Beltrami method to larger applica-
tions.
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Given the high cost and the challenges of computing the Jacobian, this study
explores two JFNK solution algorithms. Both of these will employ the finite
difference technique given in Equation (18) to approximate the matrix-vector
product required by the restarted GMRES iteration. Both methods use a
restart length of 50 (i.e., GMRES(50)) and are converged to a relative toler-
ance of 3× 10−2 in the two-norm of the residual. In both cases, right precon-
ditioning is employed, and AMG V-cycles are used to approximately invert
the preconditioner, P , to a relative tolerance of 1 × 10−2 in the two-norm of
the residual. These two approaches differ only in the preconditioning approach
used for this linear system.

The first preconditioning method is based on forming a full Jacobian for use
as a preconditioner. Instead of recomputing this Jacobian in each nonlinear
iteration, however, this approach will use the initial Jacobian for all nonlinear
steps. Clearly, this idea does not eliminate the cost of forming the Jacobian;
it seeks to amortize this cost by forming J only once and using this as the
preconditioner, Pfrozen = J (x(1)), for all linear iterations in all Newton steps.
This technique is termed the frozen preconditioner method. One critical aspect
of this frozen Jacobian approach is that the Newton iteration is not technically
altered by the frozen approximation; only the efficiency of the linear solution
algorithm is affected (cf. [9]). Specifically, in the first Newton step, Pfrozen is
the ideal preconditioner, while its efficacy will decrease somewhat as the New-
ton iteration proceeds. In many applications, the grid movement is relatively
small, as is the number of Newton steps required to converge the system. For
these problems, the frozen preconditioner remains effective for the entire so-
lution process. Further, the setup phase of AMG is rather costly, as it creates
a hierarchy of grids and discrete operators. Thus, a desirable feature of the
frozen preconditioner is that the setup phase is only performed once. Unfortu-
nately, as noted above, a strong theoretical foundation for the application of
AMG to this class of problems is lacking. Indeed, in the examples that follow,
convergence rates ranging from approximately 0.15 on small problems to 0.90
on larger, more challenging grids (4) are observed. While these results are still
a significant distance away from the bound at 1, they further reinforce that
AMG performs significantly better for scalar diffusion applications.

The second (and fastest) JFNK method improves on both weaknesses present
in the frozen preconditioner. This method is based on preconditioning using
a Picard linearization PPicard = D = diag{D1,D2,D3}. In this case, the con-
nection to the discrete linear system is given by

Di(x
(k)) =

∂Fi(xi,G(x(k)))

∂xi

∣∣∣∣∣
x=x(k)

= K(x(k)). (23)

Here, the dependence of Fi(x) is explicitly decomposed into a dependence on
the coordinate xi and the target metric G(xk). This formulation highlights
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that the Picard approximation freezes the dependence on the target metric at
the current iterate before taking the derivative, and in so doing, removes the
coupling across coordinates. Thus, the cost of forming the Picard matrix is
solely that of forming the finite element tangent stiffness matrix. Furthermore,
this approximation to the Jacobian results in a symmetric, positive definite
matrix (i.e., each Di is a scalar diffusion operator) that is ideally suited for
AMG. Indeed, one would expect excellent AMG performance with this re-
sult; in testing convergence rates ranging from approximately 0.10 (for small
problems), to roughly 0.30 for larger grids were observed 4.

One expects to see fewer AMG iterations per GMRES iteration with the Picard
preconditioner, PPicard, than with the frozen preconditioner, Pfrozen. Unfor-
tunately, the Picard preconditioner is not typically as effective as Pfrozen; a
small increase in the number of GMRES iterations per Newton step is an-
ticipated. The results presented in the next section illustrate this behavior,
but also confirm that the Picard preconditioner is significantly faster albeit
not quite as effective. Of final note, the AMG setup phase is performed only
once for the first GMRES iteration in each Newton step, and then the setup
is reused without modification for subsequent GMRES iterations.

4 Numerical Examples

In this section, the two proposed JFNK solvers are compared with the Newton-
Krylov solver used in the original Laplace-Beltrami grid generator developed
by Hansen et al.[4]. This comparison will involve some of the examples con-
sidered there, followed by testing on larger problems to explore the scalability
of the solvers. Section 4.1 examines solver performance on a representative
sample of three grids from [4]. Then, in Section 4.2, a sequence of structured
and semi-structured grids are used to examine the algorithmic scaling of the
three solvers with increasing grid size.

In all of the results presented, nonlinear convergence is defined by performing
Newton iterations until a relative convergence criteria in the two norm of the
nonlinear residual,

TOL =
||F(x(k))||2
||F(x(0))||2

≤ 10−6 , (24)

is satisfied. The initial state of the grid is used as the initial guess.

The implementation of these algorithms is in the form of an ANSI-C++ code
that was derived from the original code used in [4], which uses existing C++
and Fortran (77/95) based solver packages. The nonlinear solver employed in
[4] uses the Block Preconditioning Toolkit (BPKIT) [29] as a linear solver and
preconditioner. For the JFNK solvers developed here, the restarted GMRES
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solver from the PCG software package [19] is used, along with Ruge’s AMG1r6
implementation of the Ruge-Stüben AMG [17].

To simplify the discussion of these results, each solver will be denoted by the
preconditioner that it employs. Specifically, the NK solver from the original
grid-smoothing research [4] is termed BILU(1), the JFNK solver that uses
the frozen Jacobian preconditioner is called frozen, and the JFNK solver that
uses the Picard linearization as the preconditioner is denoted Picard. In the list
below, a summary of the arrangement of components and relevant parameter
values that characterize each of these three solvers, is outlined.

(1) BILU(1): This is the Newton-Krylov solver used in the original develop-
ment by Hansen et al.[4]. It forms the full Jacobian each Newton step and
uses the restarted flexible-GMRES(50) Krylov method from BPKIT. This
Krylov iteration is converged to a relative tolerance of 1×10−2 in the two
norm of the residual. The preconditioner used is Block ILU(1), with 16
blocks, followed by two passes of Symmetric Successive Over-Relaxation
(SSOR) (also native to BPKIT).

(2) frozen: This is the first JFNK based solver considered, where restarted
GMRES(50) is used as the Krylov method, and Equation (18) approx-
imates the required matrix-vector multiplication. The preconditioner is
the Jacobian formed for the first iteration, Pfrozen = J (x(1)), which is
then reused for all subsequent linear system solutions. The preconditioner
is approximately inverted with AMG V-cycles to a relative tolerance of
3 × 10−2 in the two norm of the residual. Similarly, the restarted GM-
RES(50) iteration is converged to a relative tolerance of 1× 10−2.

(3) Picard: This is the second JFNK based solver, where restarted GM-
RES(50) is used as the Krylov method, and Equation (18) again approx-
imates the required matrix-vector multiplication. The preconditioner is
a Picard linearization, PPicard = D = diag{D1,D2,D3}, which is simply
the stiffness matrix evaluated at the current iterate. The preconditioner
is approximately inverted with AMG V-cycles to a relative tolerance of
3 × 10−2 in the two norm of the residual. Similarly, the restarted GM-
RES(50) iteration is converged to a relative tolerance of 1× 10−2.

The majority of computations in the solver study which follows were run on
a Pentium 4 Xeon at 2.8GHz, using the Intel 8.0 compiler suite. The only
exception is the scaling study on the sequence of corner grids depicted in
Figure 7, which was run on an AMD Opteron system at 2GHz, using the
Portland Group 6.0 compiler suite.

14



4.1 A Suite of Grids

In the first part of the solver evaluation, three grids, namely the cylinder, ex-
truded horseshoe, and turbine grids, from the original three-dimensional grid-
smoothing paper [4] are considered. The extruded horseshoe, shown in Figure
3, is a two-dimensional horseshoe grid extruded into the third dimension along
a quarter circle (topologically a quarter of a torus), and is composed of hexahe-
dral elements. The turbine, shown in Figure 4, is an unstructured tetrahedral
grid representing a turbine nozzle; this grid is courtesy of the amiraTM soft-
ware package by TGS, Inc. (www.tgs.com). In both Figures, cross-sections
through the original and smoothed grids are shown.

Fig. 3. The extruded horseshoe grid (see [4]). From left to right: the full initial grid,
a cross-section of the initial grid, and a cross-section of the final grid.

Fig. 4. The turbine grid (see [4]). From left to right: the full initial grid, a cross-sec-
tion of the initial grid, and a cross-section of the final.

All three of the solvers outlined previously in Section 4 (i.e., BILU(1), frozen,
and Picard) were studied on on all three of these grids. The results of this
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study are presented in Table 1 in the form of the number of iterations re-
quired to achieve convergence, where the execution timings and speedup fac-
tors are shown in Table 2. In the case of the iteration counts, it is apparent
that the cylinder and turbine grids are too small to differentiate the iterative
behavior of the three solvers. In these cases, all three solvers have a very low
GMRES/Newton count (around two), and both the frozen and Picard solvers
have a very low AMG V-cycles/GMRES count (also around two). However,
even for these small grids, the solution times are significantly different. Both
of the JFNK methods show improvement beyond the BILU(1) method; the
frozen solver is approximately 4.5 times faster and the Picard solver ranges
from 37 to 51 times faster.

The extruded horseshoe grid is more than an order of magnitude larger than
the other grids; as a result the grid is large enough that differences between
the solution approaches become more apparent. Specifically, it becomes clear
that using AMG to approximately invert Pfrozen is the best preconditioner of
the three studied, showing an average of 7.50 GMRES iterations per Newton
step compared with 11.83 and 20.14 for the BILU(1) and Picard solver, re-
spectively. However, Pfrozen is a larger and more complicated matrix than the
Picard preconditioner PPicard, which is a set of three decoupled scalar diffusion
problems. Hence, the average number of AMG V-cycles per GMRES iteration
is significantly higher for the frozen preconditioner, 19.53, compared with 6.11
for the Picard preconditioner. In addition, the speedup for the extruded horse-
shoe grid is excellent; resulting in factors of 4.0 and 30.9 for the frozen and
Picard solvers respectively.

Table 1
Average iteration counts, GMRES/Newton and AMG V-cycles/GMRES, are shown
for the three solvers introduced above, for each of three grids from [4].

GMRES/Newton AMG V-cycles/GMRES
Grid Name Size (3N)

BILU(1) Frozen Picard Frozen Picard

cylinder 2202 2.80 1.75 2.00 1.86 2.25

turbine 1926 1.80 1.75 2.00 1.71 2.00

horseshoe 24795 11.83 7.50 20.14 19.53 6.11

4.2 Scaling Studies

The second phase of this study examines the algorithmic scaling of the three
solvers and their various components over two sequences of grids. The first
example set involves a sequence of progressively-finer grids with randomly
perturbed vertices on a cubic domain. The second set involves progressively-
finer grids in a more-complex “corner” grid configuration.
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Table 2
The overall solution time (seconds) for the three solvers, and the speedup factors
for the frozen and Picard solvers relative to the original BILU(1) solver, are shown
for each of three grids from [4].

Solution Time (s) Speedup
Grid Name Size (3N)

BILU(1) Frozen Picard Frozen Picard

cylinder 2202 86.6 18.9 1.69 4.6 51.2

turbine 1926 58.1 13.0 1.56 4.5 37.3

horseshoe 24795 2572.2 648.1 83.2 4.0 30.9

Fig. 5. An 8 × 8 × 8 logically square grid inside a unit cube. From left to right:
the full initial grid, a cross-section of the initial grid, and a cross section of the
final grid. The initial grid was generated by randomly perturbing the vertices of a
uniform cubic grid. The sequence of grids in the scaling study have 4, 8, 16, and 32
elements in each coordinate direction.

4.2.1 Randomly Perturbed Structured Grids on a Cube

The first grid sequence studied is a logically structured hexahedral grid on
a cubic domain. Each grid in the sequence is created by first generating a
uniform cubic grid with spacing h, and then randomly perturbing each ver-
tex within a cubic neighborhood of the vertex, [−0.2h, 0.2h]3. On the planar
boundaries of the cube, vertices move within each plane; on the edges of the
cube, vertices are constrained to move along the edge; and on the corners of
the cube, vertices are fixed. Figure 5 shows a grid of 8 × 8 × 8 elements, as
well as a cross-section view of this grid and the corresponding smoothed grid.
The main feature of this Figure is that at vertices away from the boundary of
the cube, the memory of the distorted grid is lost and the vertices relax back
to the unperturbed uniform orthogonal grid. This is a consequence of how
the target metric is defined in conjunction with the grid topology. If a greater
attraction to, or memory of, specific features in the initial grid is desired,
modifications to the target metric may be introduced to provide the desired
behavior. As was discussed in Section 2.1, Dirichlet boundary conditions are
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Table 3
Average iteration counts, GMRES/Newton and AMG V-cycles/GMRES, are shown
for the three solvers introduced above, for the sequence of square grids with ran-
domly perturbed vertices (see Figure 5).

Dimensions GMRES/Newton AMG V-cycles/GMRES

(Elements) Size (3N)
BILU(1) frozen Picard frozen Picard

4× 4× 4 81 2.00 1.80 5.60 2.00 1.93

8× 8× 8 1029 4.20 2.50 9.60 2.90 2.40

16× 16× 16 10125 11.17 2.80 17.33 7.64 3.00

32× 32× 32 89373 28.29 5.00 28.14 45.67 3.91

imposed on the vertex coordinates that rest on the boundary. In this example,
the suggested modified form of the coarse-graining equation (10) was used to
obtain the target metric for the boundary elements, which acts to indirectly
set the boundary condition for the boundary metric.

All three of the solvers discussed in Section 4 (i.e., BILU(1), frozen, and Pi-
card), were studied on this sequence of perturbed grids. The iteration counts
are shown in Table 3, and the execution times are plotted in Figure 6. Once
again, the iteration count confirms that the frozen Jacobian is the most ef-
fective preconditioner, showing only a modest growth in the average number
of GMRES iterations per Newton step for the first three grids. The marked
increase in iteration count for the largest grid, from 2.8 to 5, is noteworthy,
but it is not a conclusive indicator of scaling behavior. In contrast, for both
the BILU(1) and Picard preconditioners, the average number of GMRES it-
erations per Newton step increases steadily with grid size, reaching nearly
identical values of approximately 28 for the largest grid. Most importantly,
the rate of growth is significantly higher for BILU(1) (≈ 2.5), compared with
Picard (≈ 1.7). Finally, note that the different characteristics of the full Ja-
cobian matrix (coupled system of three PDEs) and the Picard preconditioner
(three decoupled scalar diffusion equations) are reflected in the average num-
ber of AMG V-cycles per GMRES iteration, which reach a maximum of 45.67
and 3.91, respectively, for the largest grid. Moreover, the growth in the num-
ber of AMG V-cycles per GMRES iteration is significant and superlinear for
solving the Jacobian system, and nearly flat for the Picard linearization.

The differences in the performance of these components translates to a sig-
nificant speedup relative to the BILU(1) solver for the Picard solver, a factor
of 26.38 on the largest grid, and a modest speedup for the frozen Jacobian, a
factor of 3.63 on the largest grid. Note that the speedup for the Picard solver
reached a high of 52.1 on the second smallest grid, and then declined to 45.40
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Fig. 6. Solution times of all three solvers for the sequence of square grids with
randomly perturbed vertices (see Figure 5) plotted against the number of unknowns.

and finally to 26.38. This decline in speedup is contrary to what is expected
from the iteration count data. This effect is due to the computational cost
of the AMG solver. The AMG1r6 algorithm exhibits suboptimal scaling in
its setup phase and increasing computational complexity of the constructed
hierarchy of components for large three-dimensional problems. Indeed, the
compromise between optimal scaling of the setup phase and the potential loss
of optimality in the solve phase of algebraic multigrid methods remains an
active area of research. It is expected that using a more advanced AMG solver
with options for aggressive coarsening (e.g., [28]) would result in speedup fac-
tors that are closer to the expected performance suggested by the iteration
counts.

4.2.2 Uniform Refinement of a Corner Grid

The second sequence of grids was created using the CUBIT Mesh Genera-
tion Toolkit [30] and is based on uniform refinement of a corner gridded with
hexahedral elements. Figure 7 shows a cross-section view of the third grid
in this sequence, which is contains 12,288 hexahedral elements. These cor-
ner grids pose challenges similar to the extruded horseshoe discussed above,
including a triple-point junction along the reentrant corner. High curvature
features of this sort are known to cause traditional Laplacian smoothing to
fail if convergence is attempted, and also challenge the nonlinear solver in the
Laplace-Beltrami target-metric methodology. The right view of Figure 7 shows
that the smoothed grid in the neighborhood of the triple point should be well
balanced when the grid generator has converged.
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Fig. 7. A grid consisting of 12288 hexahedrons. Shown are a cut through the initial
grid (on the left) and a cut through the final grid to expose their interior. This grid
is part of a sequence of successively refined grids with 192, 1536, 12288, and 98304
hexahedrons.

Dirichlet boundary conditions are prescribed on the vertices, but in this exam-
ple element ghosting is employed to calculate the boundary metric. All three
of the solvers listed in Section 4 (i.e., BILU(1), frozen, and Picard), were stud-
ied on this sequence of corner grids. Iteration counts were collected in Table 4
and the timings are plotted in Figure 8. The iteration counts follow the same
trends observed in the previous examples. However, the scaling in these trends
now shows that the Picard solver is not only the fastest, but scales significantly
better than the either of the frozen or the BILU(1) solvers. Specifically, the
average number of GMRES iterations per Newton step increases by over a
factor of 5.5 from the third to fourth grid in the study for the BILU(1) solver,
while it only increases by a factor of 1.8 for the Picard solver. Moreover, where
the apparent scaling of the frozen Jacobian preconditioner was inconclusive
before, here the number of GMRES iterations per Newton is increasing by
approximately 1.6 with each increase in grid size. Thus, the scaling in terms
of GMRES/Newton is very similar for the frozen and the Picard precondition-
ers. However, the scaling of the AMG V-cycles per GMRES iteration remains
significantly better, indeed nearly flat, for the Picard solver. This is in com-
parison with the frozen solver, which increases at a rate of approximately 2.5
with each grid.

The overall solution time is plotted in Figure 8, where the differences in the
solver components result in the Picard-based JFNK solver being the fastest
and most scalable solver. The speedup factors for both the Picard and frozen
solvers are similar to those seen in the previous scaling study, with the Picard
solver attaining a factor of 26.30 on the largest grid, and a corresponding
speedup for the frozen solver of 3.49. Also, the speedup factor of the Picard
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Table 4
Average iteration counts, GMRES/Newton and AMG V-cycles/GMRES, are shown
for the three solvers introduced above, for the sequence of triple point corner grids
(see Figure 7).

GMRES/Newton AMG V-cycles/GMRES
Grid Size (3N)

BILU(1) frozen Picard frozen Picard

57 2.00 1.50 3.75 1.83 1.80

1905 6.00 3.40 9.33 4.35 2.59

24609 17.17 5.33 17.00 11.78 2.98

242817 95.00 8.71 24.38 29.53 3.91

solver follows the same behavior seen in the previous study, peaking at the
second grid, and then declining, despite the obvious superior scaling of the
iteration counts. As noted before this is an issue with the algorithmic scaling
of the AMG1r6 setup phase and the complexity of the resulting hierarchy of
components. These issues are better controlled with the aggressive coarsening
algorithms present in more advanced AMG solvers [28].
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Fig. 8. Solution times of all three solvers for the sequence of triple point corner grids
(see Figure 7), plotted against the number of unknowns.

5 Conclusions

This paper presents two efficient Jacobian-Free Newton-Krylov (JFNK) solvers
for the Laplace-Beltrami grid generation system of equations. Although the
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Laplace-Beltrami approach is effective as a grid generation method for com-
plex structured and unstructured applications with highly-curved boundaries
[3,4], its application to large three-dimensional unstructured grids has been
limited by the lack of effective solvers. This paper presents JFNK solvers that
use a matrix-free matrix-vector product for the underlying GMRES iterations,
and preconditioners that are readily treated with algebraic multigrid solvers
(AMG). The two JFNK solvers differ only in the preconditioner, with the
first using a frozen Jacobian throughout the solve, and the second defined
by the Picard linearization. Numerical results contrast the performance of
these solvers with the standard Newton-Krylov method from [4], which used
a block ILU(1) preconditioner. A significant performance gain is achieved on
all grids considered, and the use of AMG leads to improved scaling with grid
size. The overall speedup factors on the largest grids considered here are ap-
proximately 4 for the frozen Jacobian preconditioner, and 26 for the Picard
linearization. These results, in conjunction with the availability of parallel im-
plementations of all solver components, confirms that the new JFNK solvers
provide the computational efficiency and algorithmic scaling necessary to use
Laplace-Beltrami grid smoothing in large-scale applications.

Future work includes exploring a more advanced AMG solver with options
for aggressive coarsening (e.g., [28]) to resolve the discrepancy between the
speedup factors that were obtained and the algorithmic scaling observed in
the iteration counts. In addition, an investigation of more advanced precon-
ditioners that further improve the results obtained by Picard linearization is
warranted. This study might proceed by capturing some of the lower-order
terms from the true Jacobian. The challenge here is to incorporate more infor-
mation from the Jacobian without approaching the complexity of forming the
full Jacobian, and without negatively impacting the performance of the AMG
solution algorithm. Parallel implementations of the GMRES and AMG algo-
rithms are readily available, hence, enabling the study of the parallel perfor-
mance of the new solvers on large-scale parallel architectures. Such a study is
required to increase the application relevance of the Laplace-Beltrami method.
Finally, the potential benefit of enhancing the target-metric tensor specifica-
tion to include new capabilities; such as the the preservation of grid features,
smoothing along interfaces and boundaries, is clearly indicated.
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